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Abstract We consider a three-dimensional seml-lJ1tinite almost planar crack. propagating qua­
-;istatICally under type I singular loading. Treating thc distortion from planar geometry as a per­
turhation we evaluate the type II stress intensity factor arising from thiS distortIOn including the
dfect of non-singular T-stresses. Using these results we perform a linear stahility analysis hy
assuming that the crack propagates locally in the direction of pure type I. We obtain a stability
diagram as function of T, and T reflectmg the interaction hemeen the effects due to the T-stres-;es
and the stabilizing effect which arises from the perturhed geometry of the crack. From this we
infer four types of stahility of the crack' monotonous stahility. oscillatory stahility. monotonous
instahility and oscillatory instahility. Additionallv we tind that for certain values of the ratio T T,
a small interval of wavelengths of the perturbation will he selected as the crack propagates. -;0 that
the componenh corresponding to these wave lengths vvill grow expol1tially while all other com­
ponents are suppressed. (opyright ( 1996 ElseVier Science Ltd.

J I",TRODUCTION

The prediction of the path of a moving planar crack which is distorted by material imper­
fections is of high relevance not only in material science but also to throw light on the
different regimes of roughness which are experimentally observed after the initiation of a
crack. The general problem is not amenable to tractable analysis. and we will follow others
in considering the case where the crack is only slightly distorted from planar geometry. We
will also work within the simplification of linear. isotropic and homogeneous elasticity. and
the regime of quasi-static crack propagation. The latter enables us to work with the
equations of static linear elasticity. In the more general case of finite velocity of the crack
tip we would have to perform a more complicated calculation using the dynamic equations
of linear elasticity.

For a slightly curved purely two-dimensional crack. the path has already been cal­
culated by Goldstein and Salganik (1974) as well as by Cotterell and Rice (l980). In the
two-dimensional case the crack path depends significantly on the sign of the so called T­
stress. the normal stress T, acting in the direction of crack propagation. Expanding the
stress field around the crack tip into

K
17(;') =_ :tiel + T+ 0(" ,.)

" 27["

T denotes the constant stress terms. The two dimensional results state that the crack
becomes unstable if T, > () and stable otherwise. In this context. the crack is defined to be
stable if the crack edge remains below the initial tangential direction.

In this paper we present a calculation of the crack path for a three-dimensional crack
after being distorted by an imperfection. In contrast to the two-dimensional result we get
two interacting contributions to stability. As before. one part arises from the T-stress but
there is an additional contribution to stability from the perturbed geometry of the crack.
This additional term has recently been evaluated by Ball and Larralde (1995) and it has
been verified experimentally (Larralde and Ball. 1995). Lnlike the two dimensional case
where only T occurs. we shall consider additional T-stress components contributing to
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stability. i.e .. T,. T, and L In what follows. we calculate the T-stress part of K
"

and add
the contribution of the perturbed geometry.

We assume that after the crack line is distorted by imperfections in the material, the
crack propagates locally in the direction of pure type L i.e.. under the condition KII = O.
This condition results from the requirement of propagation in the local direction of maximal
hoop stress or maximal strain energy release rate (Lawn. 1993). Experiments show that
even under the KIl = 0 condition a crack can split up into an array of small cracks if the
angle (p of rotation of the principal stresses (through the presence ofa non-zero KIId exceeds
a critical value <p, (Somer. 1969; Hull. 19(4). In this case a crack can propagate smoothly
only as long as <p remains below the critical angle. However. the additional constraint
(p < <p, is always obeyed within first order perturbation analysis. Writing the angle between
the local tensile stress and the principal stress as <p(KIII K" K,) and expanding to first order
(it should be noted that KIIIKI is a first order term and <p(O, K,) = 0). we obtain that <p

itselfis of first order. Since a first order perturbation analysis requires that first order terms
are small compared to all finite constants (P, in this case). it can be concluded that <p < <Pc
is always fulfilled in our analysis.

From the single remaining condition for smooth crack propagation. i.e., KII = O. we
obtain an evolution equation for the crack edge. We will find the stability to depend on the
zeros of the Laplace transformed kernel of the evolution equation. From this we derive a
stability diagram as a function of T, and T vvith surprising new features of stability for the
three-dimensional crack. By instability. in this work. we mean that the distortion of the
crack edge increases exponentially with respect to the unperturbed flat crack as the crack
propagates whereas we refer to stability if the pert urbed crack edge decays exponentially.

In order to keep our analysis tractable we have to impose certain restrictions on our
assumptions. We consider a three-dimensional semi-infinite crack in an infinite isotropic
material. The crack is assumed to move slowly compared with the speed of sound. which
is a rather severe restriction. but permits analyzing the problem through the equations of
static elasticity. Additionally in the quasi-static case the zero order displacements are those
of a static planar crack. This also simplifies the calculation of higher order corrections to
the stress field in contrast to dealing with the velocity dependent zero order terms of the
fast moving crack (Ball and Larralde. 19(5). Nevertheless. the more general case of a
distorted crack which propagates with finite velocity turns out to be an analytically solvable
task (Larralde and BaiL submitted for publication). But we emphasize the fact that this
calculation which involves an application of the Wiener-Hopf technique is considerably
more complicated than the derivation of the results presented here.

The deviation of the crack surface from planar geometry is treated as a small pertur­
bation. where second and higher order terms are neglected. Our calculation includes only
the out-of-plane perturbation: the in-plane perturbation of the crack edge is to first order
a separable stability problem. It is assumed that the unperturbed planar reference crack is
under type I loading characterized by a stress intensity factor k,.

~. EQIATION DESCRIBING THE [\OUTIO,," OJ THI:: CRACK TIP

As mentioned above. the total mode II stress intensity factor for the distorted crack,
to first order. is given by superposition of the T-stress contribution and the contribution
which arises from the distorted geometry. The latter. which we refer to as Ki" has been
calculated by Ball and Larralde (1995) where the authors evaluated the stress intensity
factors in a frame of reference parallel to the unperturbed crack. Here. we present the
transformation of Kil into the frame of local forward direction. In the frame parallel to the
unperturbed crack and with origin at the crack tip (sec Fig. I) the stress tensor reads as

(1.0') and (.1.0) are the polar coordinates of (I; ..1; ) and (II' .I e). respectively. Transforming
into the frame of local forward direction and expanding in
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we obtain (see Fig. I)
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( I )

where higher order terms are neglected and where (/,. h(/,. /). /J are the coordinates of the
crack edge. Obsening that

and

(as stated by Ball and Larralde. 1(95) we obtain

(2)

where the constant 1. is given in terms of Poisson's ratio \' by 1. = \'(2~1'). Here. hdx) is
the Fourier transform of the crack surface parametrisation hey. .::). Linearity of the eq uations
of elasticity enables us to write K 11 as superposition of its Fourier components with respect
to the.:: variable. Hence. without loss of generality. we may perform the following calculation
for a single term of the Fourier spectrum (with respect to the .::-variable) of Kn and the
perturbation of the crack surf~lce h(x. .::).

To eqn 0) we add the contribution llf the T-stress to KII . which will be calculated
below. We need to keep only T,. T,c and T since all other components of T are zero. We
calculate the T-stress contribution tll K[I by applying the weight function method to a
planar crack with straight crack edge. The weight function returns the singular stress field
around the crack edge as a reaction to a pair llf opposite point forces. each applied on one
face of the planar crack. Thus. the complete singular stress field for a planar crack can be
obtained by superposition 01' all tractions on the crack surface.

The T-tractions on the perturbed crack surface are obtained from

~ . _ ~ ". _ . _ ~ _ ((('hlX . .::) th(r. .::).. ('h(.y . .::) (~/~~~'.::))\
f(\.-) - I 11(\._) - _ T,+ , T,.n. _ T,+ _ T

. ( .r ( .:: ( .y . 1':: .
(3)

If il(.Y.::) is the normal vector to the crack surface. Since these tractions are already of first
order. it is equivalent tll evaluate them on distorted crack surface or to evaluate them on a
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planar crack to first order perturbation analysis. Another way to obtain this result is to
consider a one-to-one mapping which maps the whole three-dimensional space onto itself
and in particular the perturbed crack surface onto a plane. It is a crucial characteristic of
first order perturbation analysis that such a mapping exists and that it has the form 1+ f; (l
is the identity operator and <; a first order mapping). Parametrising the distorted crack by
this mapping. inserting for the variables into the tractions in (3) and expanding the
expression results in the same tractions but for a flat crack.

From this it follows that we can apply the three-dimensional weight function for a flat
crack from Sih (1973). Each Fourier component of the weight function for mode II reads
as

e A.\

11·l dx ..~' . .:) = ..- -- (0(1 +2:xlh'll+ Rbk (-x'))e'kl)
7[ v 27[( - y')

(4)

where a balanced point force (Q. O. R) is applied at the point (y' . .:') on each face of the flat
crack with straight crack edge on the .:-axis. Finally. the Fourier transformed T-tractions
from (3) have to be inserted into this expression. After evaluating the integral over x', z'
we obtain

(5)

as the result for the contribution of the T-stresses to KII . Note that the derivation of this
result is of different nature from calculating the contribution to KII which arises from the
perturbed geometry of the crack: the reason for this is that the latter case involved a
singular term around the crack edge whereas the T -stress calculation contains only regular
terms. In other words for the T-stress contribution it is equivalent to consider the crack
edge to be at the position of the perturbed crack or to coincide with the tip of the
unperturbed planar crack. very much in contrast to the calculation of the contribution
from the perturbed geometry where the position of the crack edge played a central role in
evaluating the stress intensity factors.

The propagation of the crack is determined by the condition that K ,) = O. Adding both
contributions for KII from eqns (2) and (5) and setting the total mode II stress intensity
factor to zero we finally obtain the integral equation which determines the direction of
crack propagation

- T2xh k (Y')k C
(/, -y') + iT" (hk(X')k( 1+ 2xlkl (/, - y')) + 2:xk(/, - X,)~h(:~:~'))1

= fd/,) +Yd/\) = : Fd/\), (6)

The driving terms on the RHS are of two origins. First f~(/J arises from separating the
convolution integral (5) into a part from 0 to /\ and a part from - x to 0, The integral
from - x to 0 is defined as/k(/J. We assume the crack surface h(x.':) to be predetermined
in the range x < O. so thatj~(/J is a known function which must be Laplace transformable.
Secondly we add a noise term Yk(X) due to the possible deviations of the material from our
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assumptions as would result, for example, in the presence of inclusions and other defects.
We will continue our calculation with Fd/J representing the general inhomogeneity on the
right hand side of the equation.

This formulation includes the special case of a constant inhomogeneity term which is
treated by Cotterell and Rice () 980). If we set f~(U = - 2k"k l and we then take the limit
k --> 0 in eqn (6), we obtain the two dimensional result of Cotterell and Rice (1980) (i .e.,
eqn (43)).

Applying the Laplace transform (this 1 is not to be confused with the .I' used in eqn
( I ))

1;(1): = I dYe "h(y)
..J{)

(7)

to elJn (6) and rearranging terms gives (from here on the k-dependence will be left implicit):

- h(O)
11(.1')-

1

where

" 2, 2T: , .2,2T,
Ikl (1 - 2-x)(\ + Ik I) - + -_.-~- -xk- -[---------- k(s + Ikl + -xlkl)

h(O) k l k l

K(s)

l(I)(,+lk:)' ,+ ------
K(s)

(8)

(9)

We choose the branch cut of K(s) to be on the negative real axis. Introducing dimensionless
parameters and translating the variable such that the branch point is at the origin

.::: = 1+
kl

Il:
2,2T

I\,y Ikl
I) , (10)

.:: denotes a complex variable in what follows and should not be confused with the .::­
coordinate above. We than obtain for the Laplace inverse transform

with

h(/,) -h(O) = e
q(.::)

d.::e" /,
p(.::)(.::-I)

( I I )

q(.::) = -h(0)((I--2-x).::\ '+/b-il),(.::+-x))+F'(lkl(.::-I)).::'2(.::-I) (12)

p(.::) = ::' , - II,'::' - 2-x.::; , + (( I - -x)/) \ - i( I + -x)I) \J:: + -x(/J \ + /3). ( 13)

The position of the zeros;, of the function p(.::) in the complex plane determines the stability
of the crack. In general the zeros are of order one and (, =1= I as well as differing from the
poles of F'(lkl(.::-1 i). Under suitable conditions on the function.:: --> F(lkl(.::-1 i), the
Laplace inverse transform in (II) takes the form
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II I -" _3(U --,'
(,) - L '(.V)(" -1)(;/ P ,,/ l,/

11' I, +C' 1 (branch cut integral)

+ I terms arising from poles of f.
rtllcs of /

(14)

For fixed k and I, ---> x the height hd/J of the crack edge is determined by the first term in
eqn (14). If one of the zeros s, of p(::) has a real part greater than I then hdlJ would grow
exponentially. We refer to this case as unstable crack propagation. Ifall zeros s! have a real
part smaller than or equal to I we say that the crack moves in a stable manner,

The function p from eqn (II) can be written as p(::) = (y :: - S1)' .. ( ,,i:: - So), The
actual zeros of p(::) are s7 with Re(s/) ? O. and we assume the ~/ to be pairwise different
and not equal to I.

For our purposes it suffices to perform the inverse Laplace transform explicitly if Fk(l\)
takes the special form Fk(lJ = 8, + l1 k c)(/J. This includes the two most relevant cases. First
the case which is treated by Cotterell and Rice. where l1, = 0 and 8 k = -2k J, /k,. Secondly
the case where the crack edge is considered to be far away from the imperfection. In the
vicinity of the imperfection the abrupt change of the direction of the crack coincides with
a temporary jump of K II to a non-zero value. We assume that far away from the imperfection
this jump of KII can be equivalently described by a sharp peak. This case is given by
l1 k = hdO -) - lidO) and 8 k = O. Evaluating the branch cut integral in eqn (14) and adding
the other terms we obtain

(15)

where erf denotes the error function and erfc the complementary error function. The index
+ indicates that square roots oftbe form" U

C in that function shall always be evaluated
as +u (otherwise it would be vuc = -u if Re(u):S; 0). It should be noticed that q-(~n
contains l1 k and 8 k •

In the second case. the constant term vanishes (8 k = 0) and in what follows we shall
refer to this situation. We then examine the zeros of the function p(::) to separate regions
of instability from regions of stability.

:1 STABILITY A\iALYSIS WITH RESPECT TO T-STRESS COMPOl\iE"ITS

In what follows we restrict our consideration. for simplicity. to the case /f Ie = O.
Including the Pc contribution to stability is a straight forward exercise. but then we would
finally get a three dimensional stability diagram which is much less illustrative than the
two-dimensional diagram presented below (Fig. 4). With /f, = O. p takes the form

(16)

In this case we first determine the actual number of zeros ofp. The number of zeros can be
derived from Rouches theorem (Saff and Snider. 1976). To apply the theorem we observe
that ( for Y. > 0)
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Fig. 2. The contour',' The limits arc to he taken as R ~ f. r ~ () and (i ~ O.

!p(.:-) _ (.::' 2 + I; (/i , + /)))1 < Ip(.::)1
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( 17)

on ;' if c; > 0 is chosen small enough. The contour ;' is shown in Fig. 2.
Then, Rouches theorem states that p(.::) has the same number of zeros in C (- x. OJ

as the function .::' 2 + ;;(/i, + (n. From this it follows that p(.::) has three zeros for {J, + {J < 0
whereas it has two zeros for {J, + (r > O.

All the zeros can be calculated numerically from eljn (16) as function of {J, and (r. We
emphasize that the parametrisation of the crack edge h(/,) in eqn (14) is Fourier transformed
in its.:: coordinate. In order to get the path of the crack edge in real space we have to collect
over k all solutions Ih(/J from eqn (14). On the other hand the dimensionless parameters.
as for example

depend on k as well. Varying k means to move on a radial line in the {J ,. {r plane where the
angle of such a radial line is given by tan ¢ = T T,. Translated into the {J,. (J, plane
collecting all solutions h,(/,) over k means that for fixed T-stresses T,. T we have to evaluate
the zeros of p(.::) on radial lines. It should be noted that the zeros.:: of p(.::) occur in the
relevant exponential factor in eqn (14) through s = (.:: - I) Ikl (s is the transformation
variable of the Laplace transform as defined in eljn (7)).

We present the zeros in Fig. 3 on radial lines in the /i ,. (J, plane for different angles.
Between ¢ = - fn and 1) = fn the main features of the shape of the zeros do not change.
For our stability considerations we focus our attention on the zero with biggest real part
since the exponential term associated with it will dominate the path of the crack edge Ih(l,)
in eqn (14).

The asymptotic expansion of the dominant zero with biggest real part as {J -> x (i.e ..
k -> 0) are given by:

rr IT
for - ') < (P < .,

- -

n
for ¢ = .,

n
for ¢ =

with

'::1 -2:x I
.:: ~ '::1 +.::; 2 \. (I +:x)2 +4:xt~-;-r/J {icos¢

n 3
for 2 < ¢ < 2 n
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FIg..'. The leros of the function p(~l on radial lines in the {I,. {r plane. We set {( = f3 cos qJ and
{r = {I SIn cjJ in eqn ( Ih). The negative {i axis coincides with an angle of cjJ + IT. Connected lines denote
a real zero: dotted lines denote the real part of a complex zero (and of its complex conjugate):
insets show detail near the origin. We chose .. = I J for the Poisson ratio (i.e., ~ == \' (2 - \'J = 0.2)

I-x] ,
_] =-')-+,,, (l+x)-+4xtanq).

We set {J, = {l cos q) and Pc = {l sin q) as the zero is evaluated along a radial line in p\, Pc
plane. In the two-dimensional limit k --> O. only the expansion for q) = 0 survives. In this
case the asymptotic behaviour of s = Ik 1(.:: - I) as the relevant exponential factor (see also
eqns (14) and (10)) is given by

This recovers the result of Cotterell and Rice ( 1980) in the two-dimensional limit.
But. for finite wave vector k. we notice several significant differences to the two­

dimensional case. First. a region occurs where. for certain wave vectors. the perturbation
may oscillate as it decreases or increases. To this case we refer as oscillatory stability or
oscillatory instability respectively.

Secondly we consider the case of pure T, (q) = 0). For P, small enough (i.e .. small
wavelength) we obtain stability although T, is positive (see the inset). Moreover as fi\
becomes more negative (i.e .. larger wavelength of the perturbation) the zero grows and
approaches one from below. This means that in the case T\:( 0 perturbations are less
suppressed as their wavelength decreases. These effects results from the interaction of the
T-stress with the stabilizing effect which arises from the perturbed geometry.

Although it is impossible to calculate the zeros explicitly (since p(z) leads to a poly­
nomial of 5th order after substituting:: --> u~). we may get explicit expressions for relevant
special points. For example we are interested in the values of fi, and fie at which the real
part of the zero becomes 1 because these values separate regions of stability from regions
of instability. This additional condition eliminates the 5th order term in p(::). We obtain
two polynomials of 4th order where the order of both polynomials can be reduced success­
ively. We end up with an implicit equation for these special values of {3" {L
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III oscillatory unstable

unshaded region = monotonically unstable

Fig. 4. Stabtlit\ diagram as function of /i, and /i.. It should be notlced the different scaling of /3, and
/L The Poisson ratio IS \ = I 3 (Y = 0.2). The irhct on the right hand side presents an enlarged

region around the origin.

Similarly we calculated the points (/1,. Ij) that enclose the regions of oscillations. i.e.,
regions of dominating zeros with imaginary part. Thus we finally obtain a stability diagram
which is presented in Fig. 4. The stability diagram provides a useful tool for experiments.
As T, and T are fixed. all Fourier components of the perturbed crack edge are given on a
radial line with angle tan 1> = T;T, in the Ii,. Ii plane. Then the stability diagram shows
the Fourier components that are suppressed exponentially (i.e., the section of the radial
line which lies in a region of stability) and the components that increase exponentially (i.e.,
the section of the line that lies in a region of instability). Additionally it shows in each case
whether the Fourier component is evolving in a monotonically or oscillatory manner.

It should be noticed that perturbations with sufficiently small wavelength are always
suppressed since a sufficiently small vicinity of the origin is placed completely within regions
of stability. We also calculated the asymptotic behaviour of all lines and the coordinates of
their crossing point in Fig. 4 as to provide sufficient information to sketch a stability
diagram for other values of the Poisson ratio.

The asymptotic expansions as fl, -> ± x are further elaborated in Appendix B:

for the line which separates the monotonically from the oscillatory stable region.

256 _
Ii -- {i'

e 31251.'

for the line which separates the monotonically from the oscillatory unstable region,

for the border line between the oscillatory stable region and the oscillatory unstable region.
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Fig. 5. Real part of the /eros of the function I'(~) along a radial line with angle if; = IT 2 - 0.005') to
illustrate the ctfect of selecting perturbatIOns with special wavelengths (:> = 0.2).
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(/J,.{3) = (.J I . - )

~( +:x) 1.

for the crossing point of all curves.
From the stability diagram we can infer another significant result. For angles in the

range of rr 2 < 4> :( rr 2 +0.0061 we observe that the radial line cuts the border line between
the regions of oscillatory stability and oscillatory instability. But since this line grows faster
than the linear radial line there has to be a second crossing point further up. As a result of
this a closed interval of the radial line lies in the region of oscillatory instability whereas
the rest of the radial line lies in the region of oscillatory stability. Hence Fourier components
within a special range of wavelengths grow exponentially whereas all other Fourier com­
ponents are suppressed. Thus the crack acts as a filter for perturbations with special
wavelengths by adjusting T, and T,. In order to illustrate this effect we present the zero
along a radial line with angle in the range rr2 < cP :( cPo in Fig. 5. The numerical value for
the grazing angle is cPo = rr2 +0.0061 if 1. = 0.2.

4. COl\,CLLSIONS

Adding the contribution of T-stress to a first order stability analysis of a slightly
perturbed semi-infinite crack under type I loading yields a stability diagram as shown in
Fig. 4. This diagram results from the interaction of T-stress components T,. T and sta­
bilising effects which arise from the distorted geometry of the crack. The main features are
regions of monotonic stability. oscillatory stability. monotonic instability and oscillatory
instability. Additionally we observe that for certain ratios T T, the crack acts as a filter
for perturbations around a selected wavelength.

In the two-dimensional limit we recover former results.
Although we obtain the outcome of our calculation as an interaction of different

effects. some of our results could have becn anticipated by intuitive considerations. For
example. as shown in the second inset of Fig. 3 (the case cP = 0). for a fixed wave number
f.: (f.: # 0) in the absence of T. the presence of a small positive T, renders the perturbation
more stable than the situation with negative T,. This is in contrast to the two dimensional
case in which positive and negative T, stresses were destabilizing and stabilizing respectively
(as mentioned previously. our results indeed bear this situation in the limit f.: -> 0). How
our result comes about can be understood through the following argument. In the absence
of T-stress. the perturbed geometry of the crack gives rise to Ky, which deviates the crack
back to the plane of reference of the unperturbed crack. The presence of a positive T, stress
gives rise to a mode II stress intensity factor which couples with the x-derivative of the
perturbation. and acts to increase the magnitude of this derivative. If this increase is small,
then the net effect of the T-stress is to enhance the decay rate of the perturbation. Of course,
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with hindsight it is apparent that as the magl1ltude of the T-stress increases, it eventually
bends the trajectory of the crack so much that it overshoots the reference plane and the
decay becomes oscillatory first and eventually unstable. Similarly, the presence of negative
T, acts to diminish the magnitude of the x-derivative of the trajectory, effectively reducing
the decay rate of the perturbation.

The variety of phenomena reflected in the stability diagram arises from the fact that
introducing T-stresses gives rise to the length scales (k,TY and (kIITY. against which the
wavelength of the perturbation can be measured. In particular, a careful choice of par­
ameters can give rise to the selection of an interval of wavelengths whose Fourier com­
ponents grow expontially. while all other components are damped.

Finally we should mention that the effect of T,c has not been explored, although eqn
(13) provides the full polynomial for extending our formulation to include those.
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APPE:"-DIX .'\

.\10Ihel//oliCii/Il'l/lho/s olld 11011/('111'/01111'1'
G(I") stress tensor at the position J~

A stress intensity factor (sec also Lawn. 1')9)). for example K I denotes the mode I stress intensity
factor
mode I stress intensity factor of the unperturbed crack
angular part of the singular stress (see also Lawn. 199))
angular part of the mode I singular stress tensor
T-stress tensor. i.e .. the constant tensor in an expansion of the stress tensor around the crack tip
order of" I'

mode II stress mtensit\ factor which anses from the perturbed geometry of the crack (Ball and
Larralde. 19951
mode II stress mtensity factor which anses from the T-stress contnbution
coordmates of points on the crack edge
mode II weight function ISih. 197) 1
Laplace transform of the function h
errorfunction and complementar\ errurfunction. respectivel\
\vhere r is Poisson· s ratiu
complex plane

APPENDIX B

Delilil, 01 Ihe COIClilillioll 0/ 'Iuhili'.\' liil('1
Mapping out the zeros ofl'lcj for different \alues of Ii, and Ii Isee Fig. )). we obtain that for fL < -II - 2:1) 1

the crack is monotonically unstable. whereas for IL > - (I - 21) 1the transition from stability to instability occurs
111 the oscillator\ region. i.e .. when the dominant zero has an imaginary part. Thus these transition points are
given hy c" = I ± i;·. To determine the associated (Ii,. Ii ) at this transition point we separate the equation

II I'll f i;)

into real imag1l1ar) parts From the re,ulting two polynomials in .; we eliminate,. Using Mathematica (Wolfram
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Research) we finally get an implicit equation for these (fJ" IL) at which the transition from oscillatory stability to
oScillatory instability occurs

0= I024( -I +:;)"( -I +2:;) +32( I +1)'( -I +2:;)(20-S:;- h' -3'l.')11;

+ ( - I + 2:;)( 112 - 32:; - 276:;' - IS4:;' - 17:;4 + .lIb' )IJ~

+6(1-2'l.1(1-:;)(1 -,..:;)'(1 +2:;)11~

+64( --I +'l.)':;(10-17:;+3:;' t-6:;')IJJi

(BI)

From the roots to this equatIOn, the unique tranSitIOn pomts ure selected by the requirement that 1'( 1+ i"/) = 0
where ;' is a function of ({i" {i).

In order to obtain the asymptotic behaviour of the oscillatory stable to oscillatory mstable transition line in
the stability diagram (Fig. 4). we set IL ~ eli': and determme the constant eand d as the biggest possible exponent
such that at least two leading terms in eqn (I S) still cancel. Indeed this is achieved by

Ii - (

In the range of Ii, > 0 the two transition points from oscillatory to monotonically regions are obtained
from the condition that

0=1'(:,,) and

wherc :" IS real m this case, Agam using Mathematlca to elimmate :" from these two equations we get

0= -3456:;"11, +:;'( 13,7lJ7 27.756:;-7524x'+ 12S:;')/<

By the same argumcnts us above. we finally obtam thc gm:n usymptotic equutions.


